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We present a straightforward numerical technique for modeling passive viscoelas-
tic networks, such as the actin cytoskeleton of ameboid cells, in the context of the
immersed boundary method. The technique involves modeling the cytoskeletal ma-
terial as a network of dynamic elastic links immersed in the ambient cytosol. Linking
rules of varying complexity allow the numerical network to exhibit varying degrees
of viscosity, elasticity, shear thinning, and thixotropy (stress-overshoot). A series of
simulated viscometer tests are used to analyze the mechanical properties of the model
networks and the effects of input parameters on these properties. The numerical net-
work is then used in the context of a full-cell model involving simulated micropipette
aspiration. These micropipette aspiration tests indicate that the immersed boundary
method—uwith the added enhancement of the viscoelastic network model presented
here—can be developed into a versatile tool for studying the free-boundary defor-
mations of passively stressed and actively moving ameboid cetiaogs Academic Press

Key Wordsviscoelasticity; ameboid deformation; micropipette aspiration.

1. INTRODUCTION

Viscoelastic materials are ubiquitous in biology. In particular, cells rely on their v
coelastic cytoskeletons for mechanical strength and—in the caamelba proteusdic-
tyostelium discoideunmuman neutrophils, fibroblasts, and sarcoma cells—for active loc
motion [1, 5, 16]. The immersed boundary method, developed by Peskin [17] to model bl
flow in the heart, has been used to model other biological problems such as platelet a
gation [13], flagellar swimming [12, 11], and bacterial deposition [9]. The distinguishi
feature of this method is that it can be used to model geometrically complex free-boun
structures as force fields immersed in a larger fluid domain.

In this paper we develop a numerical technique for modeling passive viscoelastic
terial in the context of the immersed boundary method, in order to expand the utility
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Peskin’s numerical method to a wider range of biological applications. The viscoela
model consists of a network of elastic fibers in which the fiber nodes correspond rou
to the centers of entangled actin “islands.” The mechanical properties of the network
governed by a set of linking rules that depend on distance, strain, and time. Many of
linking rule parameters, such as the time required to form a link between two proxin
nodes, have straightforward biological interpretations. Numerical viscometer tests re
the mechanical behavior of these networks, which are either viscoelastic fluids or sc
depending on the input parameter choices. Shear thinning behavior is also evident i
model networks. A network with appropriately chosen time-dependent linking rules
hibits solid/fluid duality depending on the duration of the applied stress, as well as behe
reminiscent of thixotropy; the effective viscosity of the ruptured model network increa
with rest time after rupture. In the final section we present a numerical simulation involv
the aspiration of a viscoelastic network-filled model cell into a micropipette.

1.1. Biological Background

The ameboid cell is supported by a cytoskeleton, which consists of a network of
crotubules, intermediate filaments, and actin. While both microtubules and intermec
filaments contribute to the bulk rheology of ameboid cell cytoplasm, it is the active
passive remodeling of the actin cytoskeleton that is thought to be largely responsible
ameboid locomotion. Actin monomers polymerize to form elastic actin filaments, wh
in turn are joined by geometry-specific actin crosslinking proteins to form such structt
as rodlike bundles, two-dimensional sheets, and three-dimensional gels [1]. We she
interested mainly in the actin gel, which is found in the submembrane cortical layer as
as in the advancing pseudopodia of ameboid cells.

The rheology of actin gel has been studied bothtro andin vivo. Cone-plate viscometer
studies reveal that actin gel can be described as a viscoelastic fluid [5]. The four basic tyf
viscous, elastic, and viscoelastic materials are described in Fig. 1. When suddenly subj
toa constant shearing force, a viscoelastic fluid will deform with gradually diminishing sh
rate. After a characteristic relaxation time, the elastic component of the viscoelastic flu
completely loaded and the material continues to deform at a constant rate. When the
is removed, the elastic component of the material releases its stored energy, causir
material to rebound only partially back to its original configuration [3, 14].

Actin gel, however, is slightly more complicated than an idealized linear viscoelastic flt
Actin gel appears to yield more easily to high stresses than to low stresses, a phenon
referred to as shear thinning. Also, actin gel displays a time-dependent behavior referr
as thixotropy; the gel s stiff when deformed gently, but flows freely when under greater st
and becomes stiffer the longer it remains unstressed. One explanation for this phenorn
is that quiescent actin gel consists of interconnected “islands” of crosslinked actin,
under sufficient stress these islands break apart and slide past each other, providing
resistance to flow [15].

Micropipette aspiration studies have revealed more about the rheology of actin
in a living cell. In these studies, ameboid cells such as the human neutrophil are
pirated partially into a micropipette with a diameter smaller than that of the cell. T
distance into the pipette that the cell is drawn is measured as a function of time anc
piration pressure. Like the viscometer experiments, the micropipette experiments ind
that actin gel is viscoelastic. Furthermore, the cytoskeleton appears to be solid-lik
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FIG. 1. Creep behavior of linear viscoelastic materials. The ideal elastic element (“spring”) deforms ins
taneously upon stress loading and returns to its original length instantaneously upon unloading. The ideal vi
element (“dashpot”) deforms at a constant rate under loading and retains that deformation after unloadil
typical linear viscoelastic solid (“solid1”) exhibits an initial instantaneous deformation at the instant of loadi
followed by a dampened deformation toward some asymptotic strain. Upon unloading, the solid returns expe
tially to its original configuration. A typical linear viscoelastic fluid (“fluid1”) deforms at a diminishing rate whic
asymptotically approaches a constant deformation rate. Upon unloading, the fluid rebounds exponentially, b
all the way to its original configuration. More elaborate models, like “fluid4” (not plotted), can be constructed
of the basic viscous and elastic elements.

shorttimescales [22, 6] and more fluid-like, with the cell completely entering the pipette
longer timescales [10]. The studies [22, 6] proceed to fit the analytically obtainable cr
functions of linear viscoelastic materials to the deformation-versus-time data from liv
cells. The fitted parameters, however, vary with aspiration pressure—in particular, the
rameters corresponding to the viscous elements in the linear models diminish with incree
aspiration pressure, indicating again that shear thinning is present. Further studies o
phenomenon indicate that the logarithm of the apparent viscosity of neutrophil cytopl:
decreases linearly with the log of the mean shear rate of cell entry into the pipette [23]

In Section 2 we present a mathematical model of actin network immersed in aque
cytosol. Various rules for the linking dynamics among network nodes are presentec
Section 4.1, the effects of these linking rules on the mechanical properties of the net\
are tested by means of computational viscometer tests. These tests are used to det:
the best-fitting linear viscoelastic model for each model network, as well as examir
the shear thinning behavior and thixotropic properties of two of the model networks. -
model networks are compared again in Section 4.2, this time in the context of the simul
micropipette aspiration of network-filled cells.

2. MATHEMATICAL FORMULATION

The actin cytoskeleton is modeled as a networkgpoints{A };\';‘1 with average spacing
3A immersed in a two-dimensional domaihconsisting of aqueous cytosol. The motior
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FIG. 2. Elastic interconnections among numerical actin nodes or “islands.”

of the fluid phase is governed by the incompressible Navier—Stokes equations given &

au
p(at+u-Vu>=—Vp+,uAu+F, Q)

V-u=q(xt) 2

in , with periodic boundary conditions @2. Equation (1) is Newton’s second law, where
p is the fluid densityy is the viscosityu is the fluid velocity, andF contains all of the forces
transmitted by the network onto the fluid. In Eq. (@]x, t) =0 implies incompressibility.
In the micropipette test runs, which involve sources and sinks, we will have nogzero
a vanishingly small subset 6%; Eq. (1) is valid on the complement of this subset.

Recall that the cytoskeleton was described in the previous section as interconne
“islands” of crosslinked actin. Each network noflg can therefore be thought of as the
center of one of these islands, and the entanglements or interconnections between ar
of these are then represented as elastic liksining nodesA; andA ;. Figure 2 illustrates
an example of such a network.

Let the position of nod¢ at timet be denoted by (t), or simplyA; if time dependence
is understood. The network nodes move at the local fluid velocity. We express this as

d

aAJ- = U(Aj, t). 3
As this network is carried along at the local fluid velocity, it may become strained frt

its original or “target” configuration, and as a result, the individual fibers in the network:

strained from their target lengths. The dimensionless sggion a link¢;; joining nodes

A; andA; is given by

A =Ajl

i = T -
wheredA;; denotes the resting length of the ligk joining the nodes. (It should be noted
that in the limit as max éAi; — 0, the set of strains on the individual links characterize tt
Cauchy infinitesimal strain tensor for the material [14, 3].) The strain on a link results
tension on that link. If the interconnections between actin islands are assumed to ac
Hookean springs up to rupture, then the tensigrof link ¢;; is a linear function of the
strain, given by

1, 4)

Tj = Sje;, (5)

where§; is the spring stiffness constant for the lihk andg; is the strain as defined in (4).



90 DEAN C. BOTTINO

In a general sens€S;) and (8A;;) can be thought of as sparse symmetric matrice
that characterize the interactions between interacting nodes and, therefore, the mech
behavior of the entire network. In this paper we will consider four types of networks w
differing linking and forcing rules: the “control” network, the “memory” network, the
“(capture) annulus” network, and the “time-dependent” network.

1. Control network In this network, all the spring constarfis are set to zero, so that
there is no linking and the only mechanical properties of the network/fluid composite
those of the ambient fluid.

2. Memory networkProximate nodes at tinte= 0 are joined for all time, with constant
resting length and constant spring constants, regardless of the strains on the links. In:
of our mathematical formulation, we write this as

8A; (1) = [[AiI(0) — Aj (O
Sj ) = §;(0)

for all t > 0, where§; (0) = Sa > 0 if rmindA < |Ai (0) — A (0)|| <ImadA, and§;(0) =0
otherwise. In all of the memory network simulations in this papgs,—= 0.8 andr jox=1.8.

3. Capture annulus networl et rmindA andrmadA denote the inner and outer radii
of an annular region centered at a nodlg At each timet, the nodesA; and A; are
linked by a spring with constant resting lengih and constant stiffnesS, as long as
rmindA < [[A;i — Ajll <rmadA, that is, as long a8, is insideA;’s “capture annulus.” This
set of linking rules is intended to correspond to the tendency for inter-island connect
to rupture under excessive tension and to fold easily under excessive compression.
Fig. 3.)

4. Time-dependent netwarket t;rm, denote the time required for a link between twc
proximate nodes to form, and Ig; denote the total age of the link, including formation
time, before the link decays (disconnects). Lg§: denote the strain rupture ratio for the
links, and letr,indA andrmaxdA be the inner and outer capture radii. Finally, 8tbe a
constant elastic stiffness. The linking rules proceed as follows: for any Apde

(a) If another nodeéA; enters the “capture annulus” aroufd at timet =ty and
remains in that capture annulus for a duratior@f, seconds, then at tinte =ty + tiorm
the nodesA; andA; are joined by a link;; with resting lengthSA;; = [|A; (t) — Aj(t) |
and stiffness constai$a.

(b) As soon as either (i) the strain ratig + 1 of link ¢;; exceeds the strain rupture
threshold e Or (i) t > to + tior, the link 4 is ruptured. If at this timé\; is still inside the
capture annulus o4 ; and it remains there for an additional tirfagn, the link may reform
with a new resting length, according to rule (a). See Fig. 3.

(6)

The time-dependent link formation criterion (4a) is intended to resemble the tendenc
connections between separated islands of polymerized actin to reform, given sufficient
near each other (and thus sufficiently low shear rates). The link disruption criteria give
(4b) are supposed to capture the tendency of actin fibers to rupture under excessive
as well as the continual remodeling process that the cytoskeleton undergoes in a living

To determine the force density per unit area passed to the two-dimensional fluid dor
by the internal network tension forces, we have to study the mechanical properties o
numerical network in the limit of spatial refinement, that is, as the characteristic n
spacing distancéA — 0. In this limit, the discrete actin poin{g\;} become dense in a
closed two-dimensional subregi@nof 2; thus for this discussion we consider the actin t
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CAPTURE ANNULUS TIME-DEPENDENT

FIG. 3. Linking rules of the capture annulus and time-dependent networks. Undeapthére annulusrules
(left), the pointA; is not linked to the poin&; when it is at (A) since it is not in the shaded annular capture regio
of Aj. As soon a#\; moves into the region it is immediately linked (B) &g by an elastic element of constant
resting lengthSA (represented by darker circle inside shaded regidnyemains linked as it passes through the
region (C), but becomes unlinked upon exiting (D and E), linked again after reentering (F), and unlinked ags
(G). Note that the link;; between the points is under tension (B), compression (C), and is relaxed (F) at vari
points of its movement. Under theme-dependentlinking rules, when the previously unlinked (A) poiAt
enters the capture annulusAf at position (B) and remains (C) in the region umti t; =ty + tiom, then a link
is established with resting length equal to the distance between the points at the moment they are linked (D
link can persist even if\; leaves the capture region (F) and will break (G) if the stegion the link exceeds the
ratior . or if the link exceeds a certain age, that ig, # to + tio:.

be a continuum materigh\(r, s) | (r, s) € | o C R?} parameterized by the map: | — Q.
We determine the net force exerted by the surrounding network upon a small Aubsét
the actin network parameterized by the rectanglR=1[r1, ro] x [s1, 2] by summing the
forces exerted on the four edges, or “faces,” of its boundary:

rz S
F= [ Tats-Tarspdr+ [ Tora9) - Tirusds @)
ri S

HereTs=ns- o] dA/dr| is the force per parametric elemeahtdue to the stress tenser
exerted onthe edge af Awith outward normahs = (0A/3s)/||0A/3s]|. The normalization
factor||0A/dr || is needed because the two-dimensional stress tenisaneasured in force
per arc length. The interpretationDf in terms of the actin network is best stated as follow:
the quantity

ra2
/ Ts(r, sp) dr (8)
ri
is the limit aséA— 0 of the sum of the forces exerted upon the actin nodes insidle
by actin nodes outsida A via links passing through the “face” (given by{A(r,s) |1 €
[r1,r2]}) of AA(see Fig. 4).

By applying the fundamental theorem of calculus to (7), we establish the netHace
AAto be

Fe [ [ 2rydsd [ 1 drd S ro+Lmydr. (o
= e r o ras= — — re.
/rl/&as(s)s +/&/ odrds= [ [ Sao+tanar. @
Thus the force density per unit areapaframeter spaces given by

d d
fza_S(Ts)‘Fg(Tr):V‘Ta (10)
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FIG. 4. An elementA A=A(AR) of the actin continuum. The thickened segment on the upper fagdRof
is stretched byA(r, s) by a factor of|dA/ar ||, andns - o gives the force per unit length transmitted acrosssthe
“face” of AA.

and the discretized force density, that is, the net foyamn each nodd;, is

1 Ai —A;
f = Tt 11
e 8AZ A - Al (1)

wheresA (~Ar ~ As) is the spacing parameter (and in passive networks, resting length)
the actin network and; is the tension in the link joining; andA ;, determined according
to one of the forcing rules discussed above. The force applied hyishestizedstructure
onto the fluid is then found by settingr = As=3A and using a discrete version of the
integral in (9):

Na

= ij (DA} (1) — X)(8A)?, (12)

=1

wheres is the dirac delta function.

3. COMPUTATIONAL METHOD

In order to implement the above formulation numerically, we discretize both space
time. The square fluid domaf2a =[O, L] x [0, L]is discretized as aNg x Ng square grid
with spacingAx = L /Ng. The Navier—Stokes equations (1) are discretized as

untl —yn n
( +Zu DXu ”) =-D%p" 41> DID;U™+F (13)

s=1

DO . un+1 — qn’ (14)

wheren=t/At denotes the timestef)* is the forward difference operatod~ is the

backward differenceD? is the center difference)®- denotes discrete center difference
divergencePZ is upwind difference (it = sign(us) thenDZ = D;“), andy is the number

of dimensions, in our case two [18]. This discretization is well-suited to the simulatic
that follow because the nonlinear velocity term is treated explicitly in time, allowing t
parabolic viscosity term to be solved implicitly by fast Fourier transforms. The expli
treatment of the nonlinear term does not pose a stability problem in this case since
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simulations take place at a low Reynolds numb@s~ 10°). The explicit treatment
of the force termF" and the sink terng", however, requires that the time sty be
sufficiently small to prevent numerical instability. While implicit forcing methods (usin
F™1) have been used to stabilize the immersed boundary method for larger time steps,
an improvement has not yet been considered for this method.

Givenu" and{A'}, a single timestep of this simulation proceeds as follows:

1. Theimmersed poinfé\'} are moved according to the interpolated local fluid velocit
to compute{Al"} analogously to (3),
Ng —1
AT = AN+ At Y ug d(x — kAX) d(y — TAX) (AX), (15)
k=0
whereAl' = (x", y") andd(r) is the discrete delta function originally used by Peskin i
[17]:

d(r) = { aax (L c0s(555)). Irl < 2Ax, .

0, [r| > 2AX.

2. The resulting strain on the links among the points is measured, and restoring fc
f; are assigned to all of the points according to (11) and (10).

3. Since the mass of the network is inherited from the ambient fluid, the internal netw
forces are transmitted directly to the surrounding fluid. The fé{gat the finite-difference
lattice node(kAx, | Ax) is computed by replacing the dirac delta function in (12) by th
discrete delta functiod(r) given in (16):

Na
Fua = Zfi d(x — kAx) d(y; — | AX)(8A)2. (17)
i=1
TheF" computed at each node in the discretized fluid domain is entered as the force
in the discretized Navier—Stokes equations (13).
4. If the pressure drop is being set in order to simulate micropipette aspiratiart)
is updated and passed to the fluid grid in (14).
5. The discretized Navier—Stokes equations (13) and (14) are solved by a fast Fo
transform method to obtau™*. For details of the method used see [19, 18, or 4].

Note that one of the features of the immersed boundary method is that the mecha
properties of the immersed structures affect the fluid solver only in the explicit force te
This allows the modeling of complex immersed structures by use of fast fluid solvers
simple computational domains.

4. COMPUTATIONAL RESULTS

4.1. Wall Shear Experiments

In the complete ameboid locomotion model, the actin cytoskeletal network acts in ¢
junction with the cell membrane, transmembrane focal attachments, and the substr
in order to produce locomotion. The passive mechanical properties of the actin netv
alone are therefore difficult to measure in this context, so we have devised a computat
experimental “apparatus” to test in isolation the actin network subject to the various for
and linking rules presented in Section 2.
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FIG. 5. Numerical apparatus for testing shear stress vs strain rate behavior of model actin network.
network—fluid composite occupies the space between the fixed walls, on both sides of the moving (forced)
The deformationl(t) is determined by tracking the displacement of fluid markers from their original (dashed lir
positions to their strained (solid line) configuration.

4.1.1. Setup of Numerical Apparatus

The apparatus, shown in Fig. 5, consists of two stationary immersed boundary w
flanking a movable immersed boundary wall. The numerical network occupies the sy
between the walls. The initial configuration of the actin nodes is established as follc
they are distributed in a regular hexagonal pattern with spacidg between nodes, then
each node is displaced uniformly randomly from the hexagonal pattern with a maxir
displacement of 0.78A. A horizontal shearing forcEs is applied to the wall and, in order
to prevent the wall from deviating from its original plage=y,, it is constrained in the
vertical direction.

Since the material on either side of the forced wall is identical, half of the shearing fo
Fs applied along the wall is transmitted to the material on each side. The stress tens
any point immediately on either side of the wall is, therefore,

7= {szl_ FS{)ZL} : (18)

wherelL is the length of the walls. There is no variation in thelirection, so the strain
tensor in the network simplifies to

v v dw v
oy Toax 0 3
€ = = ) (19)
W e de w o
ay ax ay ay

where(v, w) gives the displacement field of the material. Thus if we measure the horizol
displacemendl(t) of a point in the stressed wall as a function of time, we can determine
mean strain and strain rate experienced by the material between the moving and fixed \
reducing the experimental data to a single variable and simplifying the subsequent ana

In order to measure the behavior of the material in both the stressed and unstressed
we use a time-dependent step-loading function of the form

Fs = Fo(H(t) — H(t — 1)), (20)

whereF is the force magnitudesl is the heaviside function, and s the time of stress
unloading.

We measure the “strain history” of the network by recording at regular time intervals
horizontal displacement(t) of a marker point initially located in the center of the movinc
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FIG. 6. Numerical network shear tests for various networks at the instant of stress unloading. The circ
fluid markers are arranged perpendicularly to the walls at tim@.

wall. Snapshots of each run at tihe-t, are shown in Fig. 6. All of the runs in this section
were executed on a 64 64 fluid grid.
4.1.2. Assessment of Mechanical Properties of Numerical Networks

The qualitative mechanical behavior of the different types of numerical cytoskele
networks was assessed by attempting to fit strain evolution curves of various mecha
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models to the strain data from the runs. The five nontrivial linear viscoelastic models
considered are shownin Fig. 1. For each model one can obtain a differential equationrel
the forceF, extensiord, and rate of extensioth for the system. We solved these equation
for d(t) subject to the prescribed forég(t) given in (20) withFy/L = 0.01 dyn/cm. This
solutiond(t) is referred to as thereep function for constant strekw t <t, and thecreep
function for the unloaded phasd# the material fott > t, [14, 3].

Next, we used the Levenberg—Marquardt method [21] to fit the model parameter
the data generated by each numerical experimertt £, that is, for thoading phase
only of the simulation. These fitted values were then used to predict the unloading pl
of the run in order to assess how well that model described the mechanical propertie
that cytoskeletal network for that run. In other words, for each run, the model with
smallest “full merit function” (the sum of the squares of the error, taken over both load
and unloading phases) was considered to best describe the mechanical properties
network. Since models with more parameters will in general be able to fit as well ac
better than the models with fewer parameters, the model with the fewest parameters
described the data nearly as well as the models with more parameters was conside
be the simplest, most adequate description of the behavior of that network. The resul
these tests are illustrated in Fig. 7.

The best-fitting model for the control run (fluid only) was the Maxwell element, whic
is a spring connected in series with a dashpot. The fitted spring corsta very high in
this case, which was to be expected, since the limiting behavior of the Maxwell elemer
k — oo is that of a simple dashpot with viscosify

The memory network behavior was fit well by the Voigt model, which consists of a spr
with stiffnessk linked in parallel to a dashpot with viscosify This is not surprising since
the Voigt model is essentially a damped spring, corresponding to the numerical netv
springs damped by the viscous fluid in which the nodes are immersed.

Both the capture annulus and the time-dependent networks sheared easily as thoug
were fluid, and when the load was removed, they rebounded only slightly. This viscoelz
fluid behavior was best characterized by the three-element fluid model (Fluidl in Fig.
For the capture annulus network, the fit over the unloading phase was much better i
low fiber stiffness caséS, = 0.24) than in the higher stiffness casBa = 0.48); this may
be evidence of the insufficiency of the linear models in describing the mechanical behe
of these numerical networks, which will be further explored in the next section.

It is interesting to note that during loading of the capture annulus and “time depend
networks the velocity of the wall that shears this material (the slope of the graphed |
points in Fig. 7) is nearly constant, and more importantly, is smaller than the velocity in
control. Thus the dynamic linking in these networks increases the effective viscosity
this particular force magnitude) of the material between the plates.

Abehavioral feature observedin living cytoplasm but not yet reproduced by this numer
model is an instantaneous initial deformation the moment that the stress is applied.
mechanical models often used to describe the cytoskeleton, referred toin Fig. 1 as Solid:
and Fluid4 [5], exhibit this behavior. The numerical model does not exhibit thisinstantane
deformation because the movement of the network elements are necessarily damped
ambient fluid in which they are immersed. This is the case in actual cytoskeleton as \
there is friction between the actin fibers and the cytosol. This apparent shortcoming o
numerical model might be overcome by increasing the force magnitude and spring stiff
constants relative to the ambient fluid viscosity. This has not yet been explored in de
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Fitting linear viscoelastic models to numerical data
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FIG. 7. Results of model fitting to data ouput from wall-shearing tests. Fitting results for network fit
stiffness constarts, = 0.48 (top) andS, = 0.24 (bottom). The curves were fitted only for the loading phase of th
simulation, and the fitted values were then used to predict the unloading behavior for that run. The simplest
viscoelastic model from Fig. 1 with the best fit to both loading and unloading phases is shown.

but comparison between the “Fluid1” curve fitted to the time-dependent network dats
Sa=0.24 and the curve fitted to the data from the same networkSfoe 0.48 would
indicate that an instantaneous deformation-type behavior is indeed being approachec
increasing fiber stiffness.

4.1.3. Shear Thinning Behavior

Unlike any of the linear viscoelastic models to which it has been compared, liv
cell cytoskeleton appears to exhibit a shear thinning behavior [23]; for example, in
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FIG. 8. Stress versus steady-state strain rate curves for capture annulus network. The steady-state Vi
of the network was tested for different values of the elastic link stiffness corftagiven in dynes.

micropipette studies described in [22], the dashpot viscosity obtained by fitting the asj
tion distance data to the Solid1 model (see Fig. 1) is inversely proportional to the aspirz
pressure that acted upon the cell. The following numerical studies indicate that bott
capture annulus and time-dependent networks behave as shear thinning materials.

The stress versus strain raté curves for each network were determined by subjectir
each to a constant shearing force for sufficient time to ensure that a constant velocity
reached. The resulting, o) coordinate was then plotted for various stress magnitude
Furthermore, the numerical parameters for the networks were varied in order to observ
affects of those parameters on the rheology of the simulated materials.

Figure 8 illustrates the stress-strain rate relationships for the capture annulus net
for various values of the elastic link stiffne§a. The Sy =0 case (unimpeded fluid) is
included for comparison. Note that the network—fluid composite material behaves |
nonlinear (non-Newtonian) fashion for nonzero valuesSgf in particular, the capture
annulus network exhibits shear thinning behavior. Not surprisingly, the material beco
“stiffer” as the stiffnessS, is increased. The numerical parameters of the capture annt
network, their effects on the rheology of the network—fluid composite, and their poss
biophysical interpretations are summarized in Table I.

In Fig. 9 we observe the effect & on the rheology of the time-dependent network
Once again, this network behaves like a shear thinning viscoelastic fluid and incr8asin
stiffens the network. The smoothness of the stress—strain rate curves for the time-depe
network suggests that this numerical network responds more predictably than the an



MODELING VISCOELASTIC NETWORKS 99

TABLE |

Numerical Parameters of the Capture Annulus Linking Rules

Parameter Default Rheological
name value effect Description; biological interpretation
Sa 0.48 dyn/cm Stiffening Stiffness constant; the aggregate stiffness of the actin filame
joining two islands of crosslinked actin.

I max 1.8 Stiffening Outer capture radius ratio; if set to equal to 1, the network wi
have only compressive forces. If increased, increases numk
of links at each node.

I min 0.8 Relaxing Inner capture radius ratio; if set equal to 1, the network will hay

only tension forces. If decreased, can increase the numb
of links at each node.

Note.The “Rheological effect” column gives the effect of increasing the parameter on the rheological behs
of the numerical network.

network to variations in stress magnitude. This may make the time-dependent network
more desirable for implementation in the mechanical modeling of cells. In Fig. 10, we
the qualitatively different effects of the link total age duratigp on network rheology.

Table Il summarizes the effects of the time-dependent network parameters on obst

rheology.
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FIG. 9. Stress versus steady-state strain rate curves for time-dependent network. The steady-state vis
of the network was tested for different values of the elastic link stiffness corStagiven in dynes.
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Time network: varying total age of link (totage)
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FIG. 10. Stress versus steady-state strain rate curves for time-dependent network. The steady-state vis
of the network was tested for different valuesgf given in seconds.

4.1.4. Stress Overshoot

Up to this point, it would appear that the “capture-annulus” and time-dependent netw
rules exhibit roughly the same mechanical behavior. Both act like a viscoelastic fluid ur
shear stress, and both exhibit shear thinning when subjected to increasing stresse:
capture-annulus rules, however, model a network that reforms instantaneously whe
shear stress is removed, wher@asitro actin gels appear to reform with a resistance t
strain that increases with the square root of the time after removal of stress, an effect ref
to as thixotropy [15]. The time-dependent rules were devised in order to reproduae th
vitro behavior.

To test if thixotropy is indeed observed in the numerical “time” network and not in t
“capture-annulus” network, the following numerical experiment was devised using the s
geometric setup as the previous tests. After an unstressed initialization period of one se
the numerical network was subjected to a stress of 0.08 dyn/cm, sufficient to rupture
network, for a duration of 3 s. After a period tfs; seconds of “rest,” a shearing force
of 0.04 dyn/cm was once more applied to the network. The mean strain rate over the
second of re-stress was then observed.

The results of these tests are shown in Fig. 11. As expected, the capture-annulus ne
exhibits the same behavior regardless of rest time. The time-dependent network, how
becomes more resistantto strain the longer it has been allowed to “rest” and reform. Figu
shows the effective viscosity, of the time-dependent network as a function of rest tim
trest IN this figure we see that, although the experimentally observed,/t.srelationship
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TABLE Il
Numerical Parameters for the Time-Dependent Linking Rules

Parameter Default Rheological
name value effect Description and biological interpretation

Sa 0.48 dyn/cm Stiffening Stiffness constant; the aggregate stiffness of the actin filame
joining two islands of crosslinked actin.

I max 1.8 Stiffening outer capture radius ratio; if set equal to 1, the network will hav
only compressive forces. If increased, increases number of
links at each node.

I min 0.8 Relaxing Inner capture radius ratio; if set equal to 1, the network will
have only tension forces. If decreased, can increase the
number of links at each node.

I rupt 1.2 Stiffening The strain ratio at which a link joining two islands ruptures.
The stress vs. strain rate curve fQg; = 1.0 is not the same
as the curve for,, = 0.0 (simple fluid), indicating that
compressive forces also play a role in the mechanical
behavior of the network.

tiorm 0.25 sec Relaxing Link formation time; corresponds to the length of time require
for actin network to form between two existing islands of
crosslinked actin.

tiot 0.75 sec Stiffening Total age of links (includig,,) before rupture. Intended

to correspond to the constant remodeling of cytoskeleton.

Note The “Rheological effect” column gives the effect of increasing the parameter on the behavior of
numerical network.

between effective viscosity and rest time does not appear in the numerical simulation
effective viscosity of the time-dependent network does increase with rest time. The ti
dependent network fails to exhibit the, ~ /t.est behavior because of the deterministic
nature of the link formation rules. It is evident from Fig. 12 that the effective viscosity
the network increases significantlytag;approaches the link formation tintgm, resulting

in a greater number of network links and, consequently, a higher effective viscosity. Link
rulesinvolving a stochastic component may be able to better simulate the desired relatiol
betweert,est and e, but this would be at the computational expense of a call to a rand
number generator for each node—node interaction. To summarize, while the time-depe!
network does not reproduce the experimentally observed functional relationship baiwee
andt,.q it provides a qualitative improvement over the time-independent “capture annul
rules.

4.1.5. Convergence of Numerical Scheme and Estimate of Computational Expense

Although there is no formal proof for the convergence of the immersed boundary met
in more than one space dimension, we can test empirically for numerical convergenc
successively refining the resolution for a fixed test run. If the norm of the difference
tween numerical solutions of successive refinement decreases with the level of refiner
this can be taken as evidence that the sequence of increasingly refined numerical sol
forms a Cauchy sequence that converges to some solution. A convergence study ¢
type was conducted in [4] and linear convergence of the method was observed. These
ies measured the convergence of tbatrol, memory, andcapture annulusnetworks to
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capture annulus network: overshoot tests
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FIG.11. Evolution of strain resistance in ruptured numerical networks. Note that the capture annulus net\
(a) seems to retain no information of how long it has been resting; the strain rates are independent of rest
In the time-dependent network (b), however, the longer the rest time, the more resistant to strain the netw
when stress is reapplied. Shown are the strain curves of the materid)afe0.5 and 10 s of rest (a) and after
test= 0.0, 0.5, 1.0, and 15 s of rest (b).
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effective viscosity as a function of rest time
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FIG. 12. Relationship between rest tinmgg and effective viscosity., in time-dependent network. The
effective viscosity was determined by measuring the mean strain rate exhibited by the network over the i
second following reapplication of shear force. The dashed vertical line indicates the formatidgtim®.75 s,
at which point there is an increase in the number of elastic links and, therefore, in the effective viscosity o
network.

creep deformation behaviors of the type shown in Fig. 7. Since the most complex beh:
consistently observed for thiene-dependentnetwork is shear-thinning, more recent con
vergence studies have been directed toward demonstrating the numerical converger
this network to a specific stress versus strain rate relationship. Figure 13 and Table I
vide evidence that the time-dependent network exhibits linear convergence in stress v
strain rate behavior.

A typical wall shearing run using a 6464 fluid lattice and a total of 600 actin nodes
required approximately 36 min of computational time per second of simulated phys

TABLE Il
Convergence Study of Strain Rate: as a Function of Applied
Stress in the Time-Dependent Network

Norm — Ly L, Lo
l€6a — €128l /I €128l 0.0368 0.0023 0.0532
Convergence ratio 0.4968 0.3135 0.5827

Note The subscripts af denoteNg, the number of fluid grid lattice points
used. The convergence ratios indicate that the shear thinning behavior of
the network converges linearly with increased spatial resolution.
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Spatial convergence of stress vs. strain rate behavior in time—dependent network
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FIG. 13. Numerical convergence of wall shearing simulations under time-dependent linking rules. Show
the stress versus strain rate behavior of the test network for successive fluid grid refinements38f 82 x 64,
and 128x 128 lattice points.

time running on a single DEC Alpha 2100-5/250 processor. A similar run on & 128
fluid lattice with 2200 actin nodes required approximately 156 min of computational ti
per second of simulated time.

4.2. Micropipette Aspiration Simulations

Numerical simulations modeled after tire vivo micropipette aspiration experiments
[22, 6, 10, 23] may reveal the aggregate mechanical properties of the model cell, as
as the individual properties of the cell membrane and the actin cytoskeleton under val
linking and forcing rules. Although the ultimate goal of this research is to simulate amelt:
locomotion, there are several advantages to first simulating biological experiments
as micropipette aspiration. First of all, the biological experiments provide better-defi
guantitative and qualitative information to which the numerical results can be compa
Second, the numerical experiments provide an environment in which it is easier to mee
the effects of numerical parameters on the passive mechanical behavior of individual
components as well as the effects of these components on the entire model cell.

4.2.1. Setup of Model Cell and Numerical Apparatus

The model cellis initially circular in shape, with radiiys The cell membrane is modeled
as an impermeable immersed boundary 1¢6lgs, t)} for s<[0, 2rr¢]. Initially, M (s, 0)
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TABLE IV
Default Parameter Values Used in Wall Shearing and Micropipette
Aspiration Simulations

Parameter Description Value
At Timestep 0.0001-0.00025 s
L Length of square fluid domain 0.0025 cm
Ng Number of finite-difference grid 64
spaces in fluid domain
(Ax=L/Ng)
SA Interior actin spacing parameter AR
SA Membrane-embedded actin anchor %
spacing parameter
m Viscosity of immersing fluid 0.01138 cits
p Density of immersing fluid 1 g/ch
Su Membrane stiffness constant *41075 dyn
Sa-cyto Stiffness of cytoplasmic (interior) 0.48 dyn/cm
actin links
Sa-anchor Stiffness of fibers linking interior actin 0Sh-¢y10

points to the membrane-embedded
actin anchors

Note The dimensions of the fluid density and subsequent parameters differ from the
dimensions of their physical counterparts by a factor of lerigtthis is due to the fact
that the simulations were carried out in two dimensions.

describes a circle of radiug and the numerical actin network fills the interior of the
circle, with the outermost actin nodes acting as anchors embedded in the mefbr.
At any timet the local dimensionless strag(s) at a point on the membrane is given
by e(s) = ||0M /ds|| — 1. Studies involving human neutrophils indicate that ameboid ce
have up to 137% excess membrane area relative to what they would need to enclose
volume in a sphere [6]. As a result, the membrane unfolds with little or no resistance
to its maximum area, at which point it strongly resists further increases in area. If
think of the length ofM (s, t)} in our two-dimensional model as the “effective area” of th
membrane, folding included, we would lik¥ (s, t)} to stretch easily up to, say, twice its
original length (corresponding locally &gs) = 1) before becoming strongly inextensible.
Therefore, instead of a Hookean stress—strain relationship for the membrane, we ¢
one of the forniT (s) = Sye(s)(107(e(s)”)).2 The tension stress-strain relationships for th
casey =0 (Hooke’s law) and’ =9 (used in these simulations) are compared in Fig. 1

LIn living cells, the actin cytoskeleton is thought to largely occupy the cortical region immediately beneatt
cell membrane. For the purpose of this two-dimensional simulation the contributions of the network mech:
to the mechanics of the entire model cell are more significant if the numerical network is distributed throug
the cell, with a disproportionate density of membrane-embedded actin nodes in order to increase the ama
elastic fibers beneath the model membrane.

2This functional form was chosen arbitrarily because it had the desired property of a rapid transition f
weak compression to strong tension. Although it may be possible to use statistical mechanics to derive fror
principles a functional form fol, such an improvement would be unlikely to have a significant impact on the
simulations.
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FIG. 14. Comparison of Hookean (dashed line) and nonlinear (solid curve) stress-strain relationships.
membrane is relaxed at its initial configuration for the Hookeag- 0) rule as well as for the nonlinegy =9)
forcing rule. When the membrane is compressed (negative strain ratio), the Hookean forcing would caus
membrane to resist linearly, while the nonlinear forcing would allow the membrane to “fold” easily. For str
ratios up to 1, the nonlinear forcing rule provides little resistance, corresponding to membrane unfolding. At |
doubling of length (marked by an asterisk), the nonlinear forcing scheme begins to strongly resist any fu
lengthening, thereby modeling a taut membrane.

The force densityy, along the membrane is given by

a
fu = a—S(TT), (21)
whereT =T (s) is the tension ana = 7(s) is the unit tangent vector tiM } at the point
M (s, t) [20].

The membrangM (s, t)} is discretized as a loop of poin{#;} with an initial spacing
of As= Ax/4, whereAx is the finite difference fluid grid spacing introduced in Section :
This initial spacing is chosen so that when the membrane is stretched tautly, the spacin
be doubled; this maximum spacingsk/2 has been observed in numerical experiments
be sufficient to maintain the impermeability of the model membrane to normal fluid flc
The discretization of (21) at each poMt is

1 Mii1 — M; Mi_1 — M; )
fi=—— (T + Tiigp ). 22
' As( M M T I — My (22)

whereT; ;12 gives the tension between the poiktsandM; ;1. In a similar manner to (17),
these forces are spread to the fluid grid via

Fu = Zfid(xi — kAX)d(Yi — I AX)As. (23)

The movement of membrane points in the simulation must be handled differently t
other immersed boundary points in order to properly model the cell membrane’s uni
mechanical properties. In particular, the high diffusivity of membrane phospholipids
believed to allow the integral membrane proteins which bind internal actin filaments
slide freely in the plane of the membrane. As a result, several previous models of ame
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cell motion have considered a no-penetration, free-slip condition for the interface betw
the actin cytoskeleton and the plasma membrane [2, 7, 8]. In order to satisfy this inter
condition, we update the membrane poifit'} as follows. At each timestep,

1. In a similar manner to the immersed actin nodes in (15), the pfihtsare moved
at the local fluid velocity according to

M2 =MD 4 At > upd(x" = kAax)d(y" — 1 AX) (AX)% (24)
kI
2. Aperiodic cubic spline is then interpolated through the pQMﬁ%*l/z}, and the points
are redistributed evenly along the spline to ob{Mf“}.

Therefore the curve described by the membrane moves at the local fluid velocity, bu
points inside the curve are being continually redistributed. As a result, the local tensic
constant throughout the membrane. More importantly, the actin network nodes origir
embedded in the model membrane remain embedded, but the model membrane slips
past these nodes in the tangential direction.

The numerical apparatus for micropipette aspiration, shown in Fig. 15, consists of
passive model cell and a rigid pipette. The pipette, composed of a neck and a bul
tethered to fixed points in space and is also supported throughout by a series of “buttre:
or crosslinks among its immersed boundary points. The pressurégrapross the opening
of the pipette is established by way of a mass sink inside the micropipette bulb and a sc
outside the pipette. The support of the source and the sink, on which the Navier—St
momentum balance equation (1) is no longer valid, is chosen to be as far away as po:

s ;_

N /
e,

i T

FIG. 15. |Initial configuration of numerical apparatus for micropipette aspiration simulations. The sou
along the indicated diagonal line and the sink in the middle of the pipette bulb work together in order to cons
mass and to establish the target pressure drop. For the purpose of illustration, only a few of the crosslink
maintain the rigidity of the pipette are shown. The simulated domain jsn2%cross. The pipette diameter is
approximately 1@um across, the typical speed of the aspirated tipisril's, and the effective viscosity of the
model cytoplasm ranges from 0.01138%snto an order of magnitude higher. Thus the Reynolds numbers f
these simulations—and their experimental counterparts—range frottd.00°.
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from the immersed structures and therefore from the dynamics of interest. The detai
how the pressure drop is established and maintained are given in [4]. In order to deter
the effects of the periodicity of the fluid domain on the behavior of the numerical appara
two test runs were compared. In the first, the standard setup was used, in which the pi
and model cell apparatus nearly completely occupies then#54 x 64 node fluid domain.
In the second, a 128 128 node fluid domain twice as largg0um across) was used for
the same size apparatus. The deformation distdiieof the cell into the pipette during
suction and release was compared in the two runs, and the maximum differeth@e in
in the two runs was found to be less than 0.5%. It is evident from these tests that
effects of periodicity on the output of these numerical simulations are negligible. All of 1
simulations that follow were conducted using thex6@84 node 25.m fluid grid.

4.2.2. Effects of Model Cell Components on Behavior of Entire Cell

Micropipette aspiration was simulated in model cells with various mechanical propert
The first tested cell, called theontrol cell, consisted of a fluid-filled, membrane-bounc
vesicle, but all of the cell's internal forces were set to zero. Mechanically, this was simp
simulation in which a ring of fluid markers was drawn into the pipette. The second test
was themembranecell, in which the membrane dynamics of nonlinear forcing and splir
reinterpolation were in effect but the interior of the cell consisted only of the immersi
fluid. Thememory cell had the membrane forcing rules in effect, as well as the memc
network rules (see Section 2) governing the mechanics of the cell interioarruus cell
and thetime cell also had the membrane forcing activated, as well as the capture annulus
time-dependent network rules, respectively, governing the cytoskeletal linking dynamic
these test cells.

The micropipette aspiration simulations began with a 4-s loading phase, in which a
ulated pressure dropyp, measured from the exterior environment to the pipette bulb w
immediately established and maintained for 4 s. In the unloading phase, the simulated
sure was quickly equilibrated and the model cell was allowed to rebound from its strai
configuration. Figure 16 provides a qualitative comparison of the effects of the differ
model cell components on the aggregate passive mechanical behavior of the simu
cell.

A more quantitative analysis can be made by measuring the deformation didi@ance
of the model cell’s protrusion into the pipette neck as a function of time. In experimer
studies this one-dimensional quantity is often used to describe the three-dimensional pr
of cell deformation into the pipette since the creep behavior of a viscoelastic sphere u
small deformations is proportional to the creep behavior of a one-dimensional viscoel:
solid [22]. The results of these measurements are shown in Fig. 17. The control cell’'s s
history is exactly what one would expect of unrestricted fluid flow into the pipette. T
membrane cell, since its membrane satisfies a free-slip boundary condition at the pi
wall and, since its initial configuration is at half of its maximum strain, provides very litt
resistance to micropipette suction. Upon unloading, the membrane cell rebounds slig
apparently in an attempt to equilibrate membrane curvature from a parabolic shape
more circular shape.

In the memory, annulus, and time cells, the membrane-embedded actin nodes sat
no-slip condition at the pipette opening, but the membrane again satisfies a free-slip
dition, both relative to the pipette walls and to the membrane-embedded actin nodes.
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FIG. 16. Comparison of model cell mechanical components in the context of micropipette aspiration sim
tions.

three simulations we see that the numerical actin network inhibits flow of the cell protrus
into the pipette. The memory cell behaves as the memory network did in the wall sl
tests; it strongly resists deformation and rebounds exponentially toward its original circ
shape in the manner of a Voigt solid. The annulus and time cells behave similarly to ¢
other. Note, however, that the time cell deforms more than the annulus cell, while the
network in the wall-shearing experiments shown in Fig. 7 defdessthan the annulus
network. This is because the micropipette aspiration simulation lasts four times longe
simulated time than the wall shearing test. The time network that comprises the inte
of the time cell has a total link ageg: on the order of 1 s, so the turnover of the links i
manifested as a more fluid-like behavior on longer timescales. Indeed, in th2 §irsf
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Comparison of aspiration distance in tested networks
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FIG. 17. Aspiration distance plots for various membrane and network linking and forcing rules. Note t
the curves interpolated though the numerical data points are not fitted curves but rather have been added f
visualization purposes.

simulated time, the time cell deforntsssthan the annulus cell, but then the two strai
histories intersect and thereafter the time network is less resistant to stress.

It should be noted that the model cell does not rebound linearly to a circular shape
equilibration of pressure. The linear rebound observed in living cells is believed to be
to active contractions in the actin cortex [10]. The viscoelastic network model presel
here does not yet include these actomyosin contractions.

4.2.3. Shear Thinning

In preliminary simulations of micropipette aspiration over a range of aspiration pressi
from Ap=0.05 to Ap=0.20 dyn/cm, the model cell cytoskeleton did not exhibit she:
thinning behavior. Experimentally, the logarithm of cell cytoplasmic viscosity decrea
linearly with the logarithm of mean shear rate experienced by the cell protrusion asitis dr
into the pipette [23]. One possible reason that this experimentally observed relationshij
not appear is presented in Fig. 18, in which the logarithm of the effective viscosity of
time-dependent network is plotted against the strain rate experienced by the network
data were obtained from the wall shearing tests in Section 4.1. It is evident from the fic
that for lower strain rates, the effective viscosity of the model network remains relativ
constant, but for higher strain rates the network enters a regime in which the logarithm
effective viscosity does decrease linearly with increasing strain rate. Whether the rhec
exhibited by the aspired model cell would enter such a regime under higher strain rate
not yet been tested.
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effective viscosity as a function of strain rate (log-log)
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FIG. 18. Alog-log plot of the relationship between strain rate and effective viscosity from the wall-shear
test of the time-dependent network. For low strain rates, the network effective viscosity remains relatively con:
but for higher strain rates () decreases linearly with {8).

5. DISCUSSION

We have presented a method for modeling passive viscoelastic networks in the co
of the immersed boundary method. As we saw in Section 4.1, the network with the men
linking rules behaved like a simple Voigt solid while the capture-annulus and time-depen
networks behaved mechanically like viscoelastic fluids. As shown in Section 4.1.3, the ti
dependent and capture-annulus networks exhibit shear thinning behavior when expo:s
increasing shear rates. Only the time-dependent network exhibited behavior resem
thixotropy; when ruptured, the effective viscosity of the network would increase the lon
the network remained unstressed. The micropipette aspiration simulations in Sectiol
demonstrated the utility of the model network in the context of modeling passive amel
cells. Once a three-dimensional cell model of this type is developed, simulations of <
in vivo tests as cell aspiration and cell squashing may be used to validate the modé
comparing it to experimental data.

There are two significant advantages provided by this method over simply using a
tinuum viscoelastic model throughout the computational domain. The first advantac
that the method presented here allows for the possibility of two-phase flow in the mc
cell interior. For example, if the actin node spaci#gis sufficiently large, the immersing
Newtonian fluid will be able to flow relative to the actin network, thereby mimicking tt
flow of aqueous cytosol relative to the porous cytoskeleton in living cells. Alternatively,
actin nodes could be allowed to slip relative to the immersing fluid, resulting in the sé
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effect. The second advantage of using this method is the ability to model an extracel
environment that is much less viscous and effectively Newtonian relative to the cell intel
for example, in the case of cell tumbling in a flow chamber, or of a locomoting ameb
cell in an aqueous medium.

Augmented by the technique presented in this paper, the immersed boundary me
is now capable of modeling biological problems involving viscoelastic networks. T
advantage of the immersed boundary method is that it allows for the modeling of fi
boundary biofluid dynamics problems by expressing the objects of interest as flexi
elastic structures immersed in a simple computational fluid domain. Possible app
tions of this technique include passive cell deformation, such as the tumbling of wi
blood cells in arteries, active ameboid cell locomotion, for example the extravasa
and chemotaxis of phagocytes toward wound sites, and external fluid dynamics, like
beating of cilia in a viscoelastic mucous medium. Refinements of the method curre
being considered include the modeling of active actomyosin contraction, two-phase
toskeletal/cytosolic flow, protrusive force generation via actin polymerization, and brown
motion.

5.1. Additional Material

Animations of some of the wall-shearing runs and micropipette aspiration simulati
have been converted to Quicktif¥e movies and posted on the World Wide Web at th
following location:

http://www.math.utah.edu/ bottino/research/passive cyto/
passive_cyto.html.
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